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Relativistic three-dimension al quasipotential (equal-time) equations are
considered which describe bound states of a fermion and a boson of spin S 5 0
or S 5 1. The spin structure of the interaction quasipotentials in such systems
is studied, and the corresponding partial-wave equation for the simplest case is
obtained. Such equations can be used in calculations of energy spectra, decay
rates, and structure functions of quark±diquark systems (nucleons and their
resonances) and for the description of the ( p m ) atom as well.

1. INTRODUCTION

The concept of constituent diquarks was introduced in 1966.(1) In a

three-quark system spin±spin interaction can lead to the existence of the

short-range correlations in two-quark subsystems(2) which are comparable in

strength to the qq attraction inside mesons. There is experimental evidence

for diquark correlations in baryons. (3),5 Scalar diquarks are mentioned in ref.

5 to be energetically favored. Moreover, in a series of recent papers(6) it was
shown that the concept of diquarks as effective degrees of freedom arising
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as a result of such correlations has important meaning for descriptions of

nonleptonic weak decays at low energies. Scalar diquarks also arise in

superstring-inspired models.(7) Therefore, the nucleon can be interpreted as
the quark±diquark bound state and described on the basis of well-known

methods for solving two-body problem. In connection with this we mention

the papers of Lichtenberg(8) and Efimov’ s group. (9),6 There are also many

speculations concerning ª diquoniaº (diquark±antidiquark bound system) and

ª dibaryons,º which are rather based on the radical point of view of considering

diquarks as elementary constituents.
We also note that a new trend in the physics of elementary particles

connected with research on the properties of so-called exotic atoms has been

developed. Such systems represent atoms in which one of the electrons is

replaced by an elementary particle.(12) The first work devoted to the consider-

ation of these systems appeared in the forties:(13) In the mid 1970s the bound

state of p -meson and muon,(14) which also can be interpreted as an exotic
atom, was experimentally observed. The main properties of the ( p m ) atom

were studied theoretically in ref. 15 even before its experimental discovery.

In these papers attention was paid to the possibilities of exploring the features

of the p -meson by experimental investigation of the composite system of

the meson and lepton (for subsequent work see ref. 16).
In ref. 17 the influence of relativistic effects in the description of the

( p m ) atom was studied. For this purpose the equal-time quasipotential

approach suggested by Logunov and Tavkhelidze(18) was used for the descrip-

tion of these bound states on the basis of quantum field methods.

In the present paper we employ the quasipotential method, in Kadyshev-

sky’ s version,(19) to the model in which the nucleon is considered to be a
bound state of a quark of spin 1/2 and a diquark whose spin is S 5 0 or

S 5 1. We are interested in the spin structure of the quasipotentials for

interaction between a fermion (e.g., quark or m -meson) and (pseudo) scalar

particle (e.g., diquark or p -meson) as well as between a fermion and a vector

particle which is described by the Joos±Weinberg formalism.(20) We also find

the form of the quasipotential in the partial-wave equation for the ( p m ) atom7

and propose ways of numerical solution of the above-mentioned equations.

2. THE EQUATION FOR THE WAVE FUNCTION OF THE
COMPOSITE SYSTEM FORMED BY A FERMION AND
AN S 5 0 BOSON

The quasipotential equation for the wave function of a composite system

consisting of a fermion and a spinless boson has been obtained in ref. 22:

6 See also the recent reviews in refs. 10 and 11.
7 The analogous problem for the two spinor-particle system has been solved in ref. 21.
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The quasipotential VÃcoincides with the scattering amplitude of a muon

on a pion in the first approximation in the coupling constant. The 4-momenta
of particles covariantly defined in the c.m.s. are given by(22±24),8 [ l P 5
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Here M is the mass of bound system, m1 is the muon mass, m2 is the pion

mass, L 2 1
l P is the matrix of the Lorentz boost from the system with 4-momen-

tum P m and 4-velocity l m
P [ P m / ! P 2 to the rest system, and L 2 1

l P P 5 (
-

M ,
-

0 ). The covariant 4-momentum of the particle after interaction ( D 0
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D k, l P) is defined similarly.

In ref. 23 an expression for the quasipotential is given in the form
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where V0 is the local part of the quasipotential corresponding to the one-

boson exchange, D m
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are the Wigner functions.
Let us rewrite (2.4) in detail using the results of ref. 24. We employ the

expression of ref. 24 for the 4-current
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8 We omit the open dots above
-

p and
-

k in the following, implying still the covariant generaliza-
tions of the usual momenta.
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is the momentum transfer in the Lobachevsky space. W m (
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p ) is the vector

of relativistic spin [Pauli±Lubanski±Shirokov vector, p m W m (
-
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After transition to the nonrelativistic limit10 one can see that the quasipotential

(2.7) transforms to the following form (
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provided that the local part of the quasipotential is chosen in the form
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V
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(2.9)

gV is the coupling constant for the quark±vector boson and diquark±vector

boson interactions. After some calculations we obtain the matrix elements

of the quasipotential (2.7), VÃn
s (

-
k ,

-
p ). They can be written in the following

form:

9 Another version of the quasipotential approach, based on the two-time Green function formal-
ism, has been used in ref. 27. This approach leads to the quasipotentials depending explicitly
on the total energy of the bound system.

10 More exactly, to the quasirelativistic limit, similar to the use of the 1/c 2 expansion in the
Breit equation for the two-spinor-par ticle interaction.(28)
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Expanding the wave function and the quasipotential in partial waves,

we obtain the system of partial equations(26)
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The matrix element for the D l 5 6 1 transition drops out,
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Pl(z) is the Legendre polynomial of the first kind.

The value of the second integral can be taken from ref. 29, p. 822,
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In cases of low angular momenta (l 5 0, 1, 2), the first integral can be
directly calculated from (2.18),
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However, calculation of the first integral for arbitrary l, the orbital
quantum number, is highly complicated and the result seems not to be

expressed in terms of known special functions. See the Appendix for some

speculations in connection with this subject.

3. THE EQUATION FOR THE WAVE FUNCTION OF THE
COMPOSITE SYSTEM FORMED BY A FERMION AND A
S 5 1 BOSON

The equation for the equal-time WF of the composite system of a fermion

and a S 5 1 boson is analogous to the one presented in Section 2,
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It is obvious that in this case the quasipotential in the momentum representa-

tion has additional terms (which are responsible for the spin±spin interaction,

the tensor interaction, and the squared spin±orbit interaction) compared to
the case of the fermion±S 5 0 boson. (30)

Following the technique of ª resettingº the polarization indices, we get,

analogous to Section 2,11
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Let us use the equations for the 4-current of a spinor particle defined
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11 Note that j s 1p, j n 1p are the usual Pauli two-component spinors normalized by the equation
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s , and j s 2p, j n 2p are 3-component analogues of the Pauli spinors for the S 5 1 particle.
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As a result one can write the quasipotential operator as follows:
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In the quasirelativistic approximation (taking account of terms up to the

order 1/c 2), equation (3.29) yields
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where again
-

D e 5
-

k 2
-

p is the momentum transfer in Euclidean space.

Compared to (2.8) we have two additional terms corresponding to the tensor

forces and the spin±orbit interaction of the second particle.
One can see that this case is more complicated than the case of Section

2 and does not admit analytical solution. Therefore, we intend to solve

the equation numerically with the quasipotential (3.29) in the subsequent

publications. Good accuracy in attempts at the numerical solution of such

types of problems is provided by the spline method(31) or by the method
for solving the spectral problems developed in ref. 32 based on Galerkin’ s

procedure for the discretization of integral operators. They have been used

for the description of a two-spinor system in ref. 33.

4. CONCLUSIONS

We have applied the covariant three-dimensional quasipotential approach

to the description of quark±diquark bound states, which can be interpreted

as nucleons and their resonances. We have derived the partial relativistic

equal-time equation for the ( p m ) atom and other bound systems (e.g., proton)

composed of the particles with spin 1/2 (quark) and spin 0 (diquark). The
spin structure of the quasipotential for the system of a fermion and an

S 5 1 boson also has been studied.

The presence of huge terms in these equations induces us to employ

numerical methods for their solution.
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APPENDIX

The integral (2.18)

I (l)
1 5 #

1

2 1

Pl(z) dz

( g 2 2 z) ! g + 2 z
(A.1)

can be reduced by means of simple algebraic transformations to

I (l)
1 5

1

g 2 2 g + I (l)
2 1

2

! g + 2 g 2 Ql( g 2 ) (A.2)

1
1

g + 2 g 2 #
1

2 1

Pl(z) dz

! g + 2 z 1 ! g + 2 g 2

where Q l(x) is the Legendre function of the second kind. However, the

calculation of the integral in (A.2) is as complicated as that of (A.1).

We can use the multiple Mellin transform and the tables of formulas

from refs. 34 and 35 in order to calculate the integral (2.18). The multiple
Mellin transform has the form

K*(s1, . . . , sn) (A.3)

5 #
`

0

? ? ? #
`

0

K (x1, . . . , xn)x
s1 2 1
1 . . . x sn 2 1

n dx1 . . . dxn

If the function K (c1, . . . , cn) can be represented in such a form

K (c1, . . . , cn) 5 #
`

0

K1(x)K2 1 c1

x 2 . . . Kn 1 1 1 cn

x 2 dx

x
(A.4)
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then the transform K (s1, . . . , sn) is calculated by the formula

K*(s1, . . . , sn) 5 K *1 (s1 1 . . . 1 sn)K *2 (s1) . . . K *n 1 1(sn) (A.5)

After the substitution z 5 2/x 2 1, the needed integral is rewritten

as follows:

I (l)
1 5

( 2 1)l ! g + 2 1

g 2 2 1 #
`

0

dx

x
P l 1 2x 2 1 2 H (x 2 1)

3
c /x

! 1 1 c /x {1 1 [( g + 2 1)/( g 2 2 1)]c /x}
(A.6)

where c 5 2/( g + 2 1), and

H (y) 5 H 1, y $ 0

0, y , 0

is the Heaviside function.

Taking the transforms from the tables of refs. 35 and 36, we can use

the inverse Mellin transformation to find the value of the integral of (A.6)

K (c1, . . . , cn) 5
1

(2 p i)n #
g 1 1 i `

g 1 2 i `

. . .

#
g

n
1 i `

g n 2 i `

K*(s1, . . . , sn)c
2 s11 . . . c 2 snn ds1 . . . dsn (A.7)

where g k 5 Re sk , k 5 1, . . . , n.

Thus,

I (l)
1 5 ( 2 1)l ! g + 2 1

g 2 2 1 o
`

k 5 0

1

G 1 3±2 1 k 2 1
g 2 2 g +

g 2 2 1 2
k

3 G 1,3
3,3 1 2

g + 2 1 Z 1, 1, 1±2
1 1 k, 2 l, 1 1 l 2 (A.8)

where G A,B
B 1 C,A 1 D is the Meijer G-function.

Another way is also possible: to consider every term in the integral
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(A.1) separately and to employ triple12 Mellin transforms. Using this tech-

nique,(34) we obtain

K1(x) 5 Pl 1 2x 2 1 2 H (x 2 1) Þ K *1 (s) 5 G F 2 s, 2 s

l 1 1 2 s, 2 l 2 s G (A.9)

K2 1 c1

x 2 5
1

x /c1 2 1
Þ K *2 (s1) 5 2 p G F 2 s1, 1 1 s1

1±2 2 s1,
1±2 1 s1 G (A.10)

K3 1 c2

x 2 5
1

! 1 2 c1/x
Þ K *3 (s2) 5

p
G (1/2) cos( p /4)

G F s2,
1±2 2 s2

1±4 1 s2,
3±4 2 s1 G (A.11)

where c1 5 2/( g 2 1 1), c2 5 2/( g + 1 1), and s 5 s1 1 s2, G (s) is the Eiler

G -function, and G F a1 . . . ak

b1 . . . bm G denotes

G F a1 . . . ak

b1 . . . bm G 5
G (a1) . . . G (ak)

G (b1) . . . G (bm)

Then,

K*(s1, s2) 5 2
! 2 p 2

G (1/2)

G F 2 s1 2 s2, 2 s1 2 s2, 2 s1, 1 1 s1, s2,
1±2 2 s2

l 1 1 2 s1 2 s2, 2 l 2 s1 2 s2,
1±2 2 s1,

1±2 1 s1,
1±4 1 s 2,

3±4 2 s2 G (A.12)

Similar to the above calculation, employing the inverse Mellin transforma-
tion (A.7),

K (c1, c2) 5
1

(2 p i)2 #
g

1
1 i `

g 1 2 i ` #
g

2
1 i `

g 2 2 i `

K*(s1, s2)c
2 s11 c 2 s22 ds1 ds2 (A.13)

to our integral, we come to

K (c1, c2) 5 2
! 2 p 2

G (1/2) o
`

k 5 0
o
`

n 5 0

( 2 1)k 1 n

k!n!

3 G F k 1 n 1 1, k 1 n 1 1, k 1 1, 1±2 1 n

l 1 k 1 n 1 2, 2 l 1 k 1 n 1 1, 3±2 1 k, 2 1±2 2 k, 1±4 2 n, 3±4 1 n G
3 c k 1 1

1 c n
2 (A.14)

12 The number of multiple terms in the integral (A.1) is three.



Relativistic Equal-Time Equation for Quark± Diquark System 1907

which can be slightly simplified after the use of well-known expressions for

the G -function, G ( p) G (1 2 p) 5 p /sin p p and G (k 1 1) 5 k! (k 5 0, 1, . . .)

Finally, the value of the integral (A.1) can be represented in the form
of the complicated double sum of G -functions:

I (l)
1 5

1

! p ( g + 1 1) o
`

k 5 0
o
`

n 5 0

G F k 1 n 1 1, k 1 n 1 1, 1±2 1 n

l 1 k 1 n 1 2, 2 l 1 k 1 n 1 1, n 1 1 G c k 1 1
1 c n

2 (A.15)

It is not clear which representation of the integral under consideration
is more convenient; all of them are rather inconvenient for some applications.

In our opinion, further simplifications appear to be impossible, and the use

of a computer seems necessary.
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