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Relativistic Covariant Equal-Time Equation for
Quark-Diquark System
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Relativistic three>dimensional quasipotential (equabtime) equations are
considered which describe bound states of a fermion and a boson of spin S = 0
or § = 1. The spin structure of the interaction quasipotentials in such systems
is studied, and the corresponding partiabwave equation for the simplest case is
obtained. Such equations can be used in calculations of energy spectra, decay
rates, and structure functions of quark—diquark systems (nucleons and their
resonances) and for the description of the (7T p) atom as well.

1. INTRODUCTION

The concept of constituent diquarks was introduced in 1966."" In a
three>quark system spin—spin interaction can lead to the existence of the
short>range correlations in two>quark subsystems® which are comparable in
strength to the gg attraction inside mesons. There is experimental evidence
for diquark correlations in baryons.®"> Scalar diquarks are mentioned in ref.
5 to be energetically favored. Moreover, in a series of recent papers'® it was
shown that the concept of diquarks as effective degrees of freedom arising
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as a result of such correlations has important meaning for descriptions of
nonleptonic weak decays at low energies. Scalar diquarks also arise in
superstring>inspired models.” Therefore, the nucleon can be interpreted as
the quark—diquark bound state and described on the basis of welbknown
methods for solving two>body problem. In connection with this we mention
the papers of Lichtenberg® and Efimov’s group.®® There are also many
speculations concerning “diquonia” (diquark—antidiquark bound system) and
“dibaryons,” which are rather based on the radical point of view of considering
diquarks as elementary constituents.

We also note that a new trend in the physics of elementary particles
connected with research on the properties of so>called exotic atoms has been
developed. Such systems represent atoms in which one of the electrons is
replaced by an elementary particle.'” The first work devoted to the consider
ation of these systems appeared in the forties:'* In the mid 1970s the bound
state of T>meson and muon,"” which also can be interpreted as an exotic
atom, was experimentally observed. The main properties of the (7 L) atom
were studied theoretically in ref. 15 even before its experimental discovery.
In these papers attention was paid to the possibilities of exploring the features
of the m>meson by experimental investigation of the composite system of
the meson and lepton (for subsequent work see ref. 16).

In ref. 17 the influence of relativistic effects in the description of the
(t u) atom was studied. For this purpose the equaltime quasipotential
approach suggested by Logunov and Tavkhelidze"® was used for the descrip»
tion of these bound states on the basis of quantum field methods.

In the present paper we employ the quasipotential method, in Kadyshev»
sky’s version,"” to the model in which the nucleon is considered to be a
bound state of a quark of spin 1/2 and a diquark whose spin is .S = 0 or
S = 1. We are interested in the spin structure of the quasipotentials for
interaction between a fermion (e.g., quark or p>meson) and (pseudo) scalar
particle (e.g., diquark or T©>meson) as well as between a fermion and a vector
particle which is described by the Joos—Weinberg formalism.” We also find
the form of the quasipotential in the partiabwave equation for the (7tp) atom’
and propose ways of numerical solution of the above>mentioned equations.

2. THE EQUATION FOR THE WAVE FUNCTION OF THE
COMPOSITE SYSTEM FORMED BY A FERMION AND
AN S = 0 BOSON

The quasipotential equation for the wave function of a composite system
consisting of a fermion and a spinless boson has been obtained in ref. 22:

®See also the recent reviews in refs. 10 and 11.
"The analogous problem for the two spinopparticle system has been solved in ref. 21.
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The quasipotential ¥ coincides with the scattering amplitude of a muon
on a pion in the first approximation in the coupling constant. The 4 momenta
of particles covariantly defined in the c.m.s. are given by Y% [k, =
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Here M is the mass of bound system, »1; is the muon mass, m, is the pion
mass, Lj,} is the matrix of the Lorentz boost from the system with 4momeny
tym Py, and 4 velocity M = P*/\/P? to the rest system, and Li,! P = (M,
Q). The covariant 4>momentum of the particle after interaction (Ag,m/.x,, and
Ay.,) is defined similarly.

In ref. 23 an expression for the quasipotential is given in the form

A~ v O red
Ve (Apa Awn)

= 3 Dl VT (Arpy)
pol.inds.
X Vo (B, = Ky du(A i Sp) Y (B Vo) (R + At
X DSWPVT (A, k) DS VT (Mg, k) (2.4)

where Vy is the local part of the guasipotential correspondin_& to the one>
boson exchange, Abi, = (Apminp Apip)s Bfop = (Apmsips = Apip); D
are the Wigner functions.

Let us rewrite (2.4) in detail using the results of ref. 24. We employ the
expression of ref. 24 for the 4 current

- _— -
J8 (P k) = u(p, o)y u(k, vp)

= m &J&,,[P“(Ao + m) + ZW“(B)(R K)] &, (2.5)

-
8 We omit the open dots above ; and k in the following, implying still the covariant generaliza)
tions of the usual momenta.
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where
— n
K=RF =it A=yt m= ‘f‘* (2.6)

is the momentum transfer in the Lobachevsky space. W“(B) is the vector
of relativistic spin _LPauli—Lubanski—ShirokOV vector, qu”(z) =0
kuW“(p) = —(m/2)(GA)] We “reset” the polarization indices to a single
momentum, e.g., p as earlier.*'**?% As a result we obtain’

e 2
+ (7 K)p) + pS+ kY + kY
+io - [F XA+ pd+ K+ KD eR(5)F)  (2.7)

After transition to the nonrelativistic 11m1t one can see that the quasipotential
(2.7) transforms to the following form (A% =% - 7):

> dmim 1 m
Viowe (k,p) = —gb== ~+ gt =5 [1 +7 =
A% c 2m
=, 72
_ 2L m | |\ p?+ k7
gV 2 2+ e
c my Az
5
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(2.8)
provided that the local part of the quasipotential is chosen in the form
gy gF
(p1 — k)’ 2mi(A} — my)

7 =
Vo(k(—)p) = (2.9)
gv is the coupling constant for the quark—vector boson and diquark—vector
boson interactions. After some _calculations we obtain the matrix elements
of the quasipotential (2.7), Vs(k, B). They can be written in the following
form:

? Another version of the quasipotential approach, based on the two>time Green function formal>
ism, has been used in ref. 27. This approach leads to the quasipotentials depending explicitly
on the total energy of the bound system.

"More exactly, to the quasirelativistic limit, similar to the use of the 1/c? expansion in the
Breit equation for the two>spinonparticle interaction.®
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(Y +p 3+ kY + ED(imi + M) (2.10)
(P +p3+ kY + KM —m) (2.11)

(P pT+ pS+ kY + k) — 2m (A + my)
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-
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-
where 1 = [7 X A].
Expanding the wave function and the quasipotential in partial waves,
we obtain the system of partial equations®®

280 = pl = P W) = ij SVl Yt 219

where p= ‘AM‘. The coefficients
Vir(k, p) can be found by the formula
i 2 T 2
Vik, p) = NZ sin 0, d0, do, | sin O dOy ddy
KA I 0 0 0
[935#)(%)]“%(2(—)1?;13’) [QF 0 (2.15)

Here n,= ,, ¢, are angular coordlnates of the vector
n »; Ok, Ok are angular coordlnates of the vector 7y Q4P (7;) are spherical
spinors.

Let us choose the coordinate system in such a way that the vector 7;,,
is aligned to the OZ axis and the vector 77 lies in the XZ plane. The results
of calculations can be expressed in terms of the integrals I\ and 7%:

+ 1 i +
ViE(p.k) = (J+EW{[P?(P?+[H§+/¢?+/¢3)Y
1
= 2mi(r =) =R+ p S+ R kY (1 = 2mird)

_ 1\ g7 [(I+1)
+(J+ )\/2 (p1+p +k1+kz) 21
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X (17D = 1)1 — &) (2.16)
The matrix element for the A/ = 1 transition drops out,
ViT(p. k) =0 (2.17)
Here, v* = (pY kY + mDipk, vy~ = (plk — m?)/pk, and
1
0= 4—2 = (2.18)
0 (T NY -
1
0= £ (2.19)
-1 \/Y -

P/(z) is the Legendre polynomial of the first kind.
The value of the second integral can be taken from ref. 29, p. 822,

) =
2

21+1(\/Y M Al Vi (2.20)

In cases of low angular momenta (/ = 0, 1, 2), the first integral can be
directly calculated from (2.18),

1
Y-
Gy 4+ L=y =y DGy =1+ Ay v)
X In (2.21)
WY+ 1+ Y =AY — 1=y —
B =y =2Gy + 1=y =D (2.22)
17 = (% Y7 - %)1‘1‘” — (=Y 1+ 3y
XNy +1-yy -1 (2.23)

However, calculation of the first integral for arbitrary /, the orbital
quantum number, is highly complicated and the result seems not to be
expressed in terms of known special functions. See the Appendix for some
speculations in connection with this subject.

3. THE EQUATION FOR THE WAVE FUNCTION OF THE
COMPOSITE SYSTEM FORMED BY A FERMION AND A
S =1 BOSON

The equation for the equabtime WF of the composite system of a fermion
and a S = 1 boson is analogous to the one presented in Section 2,
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It is obvious that in this case the quasipotential in the momentum representa>
tion has additional terms (which are responsible for the spin—spin interaction,
the tensor interaction, and the squared spin—orbit interaction) compared to
the case of the fermion—S = 0 boson.”

Following the technique of “resetting” the polarization indices, we get,
analogous to Section 2,'!

(p1, p2; O1, Gz‘V(z)‘kl, ka; Vi, V2)
= DS AV (A, p0)} D3R (VT (Ap, p2)}

mds.
é&lézp(k( 7. p) DO VU A, k) DS VT (Mg, k)
X D0 AV T (N k) DGR (VT (Ap, o)} (3.25)

Vord (k(—)3.7) = &b, & POR()B, ety (3.26)

Let us use the equations for the 4>current of a spinor particle defined
by formula (2.5) and (3.27) for the 4>current of a vector particle in the
Joos—Weinberg formalism,

ng/)VZP (zaz)
&czp[(pz )+ L FS: K - jz(f?’z&w“(?z)] b, (3.27)

Following the rules of construction of the quasipotential over the on»shell
scattering amplitude,'®'” we obtain

ST A2 - 7 i
<p1: pZ; Glp: Gzp‘ V( )‘kla k27 le: V2p>

e B 2 7 7 .
- <p1: P2 Glp: Gzp kl: k27 le: V2p>

_ _g2 ]Ullep(p 1, kl) guV]Gzpvzp (P2= k2) (3.28)
(p1 — ki) .
.S - - 2 2 .
where, as earlier,p = p1 = —prand k = ki = — kz are the covariant gener
alizations of momenta.

"Note that &6.,» &v;, are the usual Pauli tworcomponent spinors normalized by the equation
ghey = 8y, and E_,Gzﬂ, €v,, are 3>component analogues of the Pauli spinors for the § = 1 particle.
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As a result one can write the quasipotential operator as follows:

PG R = _ng\/A(l) + i pp Y+ p S+ k0 + k%) — 2m?

2m Wll(A(l) - ml)
-
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- red
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& 2my mima(AY — my)

1
topl—
gV\/ZWl](A?‘i‘Wl])
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+gV\/2(A(1)+rn1)
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(3.29)

- 7S
K2=%—L(k3—k—L), A =R} +m3  (3.30)

and E(l):\/zz"l'm%n K =E2 + mb P3:¢;2+m5= and k3 =

=
k* + m3
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In the quasirelativistic approximation (taking account of terms up to the
order 1/¢?), equation (3.29) yields

> 4y, 1 m
Viowa(k, p) = —g¥ +g7 5 (1 + —L)

Xﬁ c? 2my
-2, 72
, L py | )\ p-+ k-
_gV P 2+ -
¢ my  m| A2
T2 T = 2
s Lm (2 = p% 51 my | 2ic) - [p X Af]
— 8V 5 4 — 8V » 1 -,
¢ m . c mi A?
22 m iS> - [3 X Ne]
gVCZ > Z’g
s - s - 0
, 1 (G- A)(S> - A = (B - S)A2
— g = (3.31)

where again X& :Z —; is the momentum transfer in Euclidean space.
Compared to (2.8) we have two additional terms corresponding to the tensor
forces and the spin—orbit interaction of the second particle.

One can see that this case is more complicated than the case of Section
2 and does not admit analytical solution. Therefore, we intend to solve
the equation numerically with the quasipotential (3.29) in the subsequent
publications. Good accuracy in attempts at the numerical solution of such
types of problems is provided by the spline method®" or by the method
for solving the spectral problems developed in ref. 32 based on Galerkin’s
procedure for the discretization of integral operators. They have been used
for the description of a twoyspinor system in ref. 33.

4. CONCLUSIONS

We have applied the covariant three>dimensional quasipotential approach
to the description of quark—diquark bound states, which can be interpreted
as nucleons and their resonances. We have derived the partial relativistic
equabtime equation for the (7TpL) atom and other bound systems (e.g., proton)
composed of the particles with spin 1/2 (quark) and spin 0 (diquark). The
spin structure of the quasipotential for the system of a fermion and an
S = 1 boson also has been studied.

The presence of huge terms in these equations induces us to employ
numerical methods for their solution.
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APPENDIX

The integral (2.18)

1
Piz) dz
1= Al

1 Jl (Yi_Z)\/YJr_Z (A-D

can be reduced by means of simple algebraic transformations to

1 2 _
1 v — 7 2 Jr -1 oy (
1 ! Piz) dz
YA A RN L N A

+

where Qi(x) is the Legendre function of the second kind. However, the
calculation of the integral in (A.2) is as complicated as that of (A.1).

We can use the multiple Mellin transform and the tables of formulas
from refs. 34 and 35 in order to calculate the integral (2.18). The multiple
Mellin transform has the form

K*(Sl, ey Sn)
o0 o0

:J J K, ..o,x)xit oo oxy g L dx,
0 0

If the function K(cy, ..., ¢,) can be represented in such a form

K(ct, .. en) = r Kl(x)Kz(ﬂ) o Ko (ﬁ) dx (A.4)
X X X

0

(A.3)
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then the transform K (si, . .., s») is calculated by the formula
K*(s1, ..., 80) = Kf(s1 + ... + s)K¥(s1) ... Kif+1(sn) (A.5)

After the substitution z = 2/x — 1, the needed integral is rewritten
as follows:

—Dyr =1 (7 2
1Y = @Pl (—— I)H(x -1
X

clx

X " -
NI+ e/ {1+ [V = DI(y™ = D]e/x}

(A.6)

where ¢ = 2/(y* — 1), and

_\L y=0
H(y)_{o, y<0

is the Heaviside function.
Taking the transforms from the tables of refs. 35 and 36, we can use
the inverse Mellin transformation to find the value of the integral of (A.6)

1 v tie
K(Cl,...,(:n):(zni)nj e

Y1
Y, ti®
K*(s1, ..., 81’ .oeandsy ... dsy (A.7)
Y I®
where Yx = Ne sk, k=1, ..., n.

Thus,

NG A 1

_ K
1= (=1~ (V‘_V)
! : kZhF(§+k) ! :

2
% Gl |——
33 (Y+ 1

1, 1, il
|4k —L 1+ z) (A.8)

where G #%c 4+p is the Meijer G>function.
Another way is also possible: to consider every term in the integral
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(A.1) separately and to employ triple'” Mellin transforms. Using this tech

nique,®* we obtain

Ki(») =P, (f —1 )H(x — )= KH(s) = F[z e s] (A9)

Kz(ﬂ)z L :Ki‘(sl)z—nr[l_sl’ll+s1:| (A.10)

xler—1 7= 81,5 T 81

@)= ] wrs
K3(x) \/1—01/x:K§"(s2) F(I/Z)COS(TEM-)FI:ZI("'52,231'_S1:| (A.11)

where ¢; = 2/(y~ 4+ 1), c2 = 2/(y" + 1), and s = 51 + s, ['(s5) is the Eiler

I'>function, and F[b T Zk :| denotes
1 - m

F ay ... dg :F!a])rgak)
bi...bn [y ... (bw)

Then,
\2m?
I'a72)
T —s1 =82, =81 =52, =81, | + 51,5, 3+ — 52
I+1—s51—85,—1—51— 52, -;-_Sl, é""sl, 711'+52, 731'_52 (A.12)
Similar to the above calculation, employing the inverse Mellin transforma>
tion (A.7),

K*(s1,8) = —

K(ci, c2) =

Y iyt
K*(s1, s2)c1 lea "2 dsy ds;  (A13)
(2n> J J

to our integral, we come to
( 1)k+n
F(I/Z)/(Zhnf kin!
k+n+ 1, k+n+1,k+1,5+n
I+k+n+2,—l+k+n+1, 3+k—5—k y—n, 3+n
Xchtles (A.14)

K(ci,c2) =

'2The number of multiple terms in the integral (A.1) is three.
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which can be slightly simplified after the use of well>known expressions for
the D>function, ['(p)['(1 — p) = w/sinprand '(k+ 1) =K (k=0,1,..))

Finally, the value of the integral (A.l) can be represented in the form
of the complicated double sum of I>functions:

1S ¢
1@__an++1)g;2;

k+n+1L,k+n+1,5+n et

1 (A5
I+ k+n+2 —l+k+n+1n+1 ¢z (ALY

It is not clear which representation of the integral under consideration
is more convenient; all of them are rather inconvenient for some applications.
In our opinion, further simplifications appear to be impossible, and the use
of a computer seems necessary.
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